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Stabilizing unstable discrete systems by a nonuniformly adaptive adjustment mechanism
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An adaptive adjustment mechanism with uniform adjustment speeds has been generalized to nonuniform
speeds so that a broader class of discrete systems can be stabilized. The controllability issue in terms of partial
adjustment is also explored.

PACS numbds): 05.45.Gg

MOTIVATIONS able (=1,2,...n) and is assumed to vary in tltenventional
range[0, 1] and in thegeneralized rang¢l, +).

Controlling chaos, or more generally, stabilizing unstable Re-expressing Eq2) as X;;1=F(X;) + [ X{—F(Xy)],
dynamical systems, has always been an important topic iwe see that AAM is a type of linear feedback control so that
physics. Recent advances and developments can be seagjustments are implemented whenever the relevant system
from [1,2,3 and references therein. (2], an adaptive ad- variables wander away from their previous states.
justment mechanisriAAM ) with uniform adjustment speed Let X be the fixed point of Eq(1), that is,X=F(X). It is

is proposed to stabilize an unstable multidimensional discretgasy to see that the systdin(X,) shares exactly the same
system. This mechanism, while inherited from the adaptive t of fixed points of. that is tY—T: (X), which will be
’ ’ - rr ’

expectation scheme widely applied in economics, possesség i
some unique advantages over the others in demanding négferred to aﬂwe generic propertyor later reference.

ther a priori information about the system nor any external DenoteJ(X) as the Jacobian matrix of the original sys-
generated control signal and always forcing the system téem F evaluated aX with {\q,\,,...,\} as then roots of
converge to its generic periodic points. In this article, anthe characteristic equation, i.e.,

AAM has been generalized with nonuniformly adjustment

speeds. Such generalization ensures the stabilization of a n

more broader class of discrete systems. More importantly, N —j()~()|:1_[ (A=X\))=0,
the controllability issue in terms of partial adjustment is also i=1

explored.

Instead of focusing on the parameter ranges of some spetherel is a unit matrix.
cific systems and discussing their controllability as most lit-  The stapility of a fixed poinX is jointly determined by all
erature does, this paper WI” follow the spirit [&f] and con-  he eigenvalueg\}. Let |\ pnal=max |\;|. Mathematically,
tinue our exploration directly to the nature of unstable,[he fixed point)?is stable if|\ l<1
ma "

periodic (fixed) points so as to address the controllability We are only concerned with the unstable fixed points, that

with respect to mpst fundamental |nterr_1al structures'. For Fh.?s, the fixed points With\ .J=1. Denote a pair of complex
convenience of discussion, we start with some basic defini-

tions and brief review of2]. conjugates\; andi; by

UNIFORMLY AAM Nj=a+bji, \j=a;—bji,

Consider am-dimensional dynamical system defined b —
Y Y Y with the moduleg;[=|\j|= \/aj2+ bjz.

X 1=F(Xy), (1) An unstable fixed point can be classified according to the
modulus of related eigenvalues:
where X, = (Xq¢, Xot ... Xnt), andF=(fy,fo,....f,), with f; Definition 2 (classification of unstable fixed
being well-defined functions on a domaih points: type-I unstable fixed pointa; <1, for allj, i.e., the
Definition - By AAM we mean the following adjusted fixed points with all eigenvalues less than unity in real parts;
system: type-Il unstable fixed points;>1, for all j, i.e., the fixed
points with all eigenvalues greater than unity in real parts;
Xt+1='~:r=(| ~T)F(X)+TX,, 2) type-lll unstable fixed point®;>1, a;<1 for somei, j, i.e.,

the fixed points with some real parts greater than unity, oth-
ers less than unity in real partype-IV unstable fixed points
there exists at least opsuch that eithea;=1 or\;=1, i.e.,

the fixed points with unity eigenvalues.

Let J(X) be the Jacobian matrix of the procds®valu-

ated atX and{X;,X,,...\,} be the related eigenvalues, so
*Electronic address: awhhuang@ntu.edu.sg that

where ' =diag{y;,7,,...,yn} IS @ diagonal matrix and is re-
ferred to as amadaptive parameter matrixereafter. The
value of y; represents the adjustment speed foritthevari-
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o n 5 It can be verified that the eigenvalue dfis A\;=—(n
|)\I-j(X)|=H (N—=Xj)=0. (3) —1)/2 and\;=3, for i=2,3,..n. Therefore, the system is
=1 unstable whem= 3. Since all eigenvalues are less than unity
(type-l fixed poinj, the system can be stabilized through

.T he objective of A.‘AM IS to stabilize an _unstable _f|xed uniformly adaptive adjustment. Actually, the critical param-
point such that, after introducing an appropriate adaptive pa-

rameter matrixI" = dia Y2,--Yn), the new eigenvalues eter Y is equal t07=()\1+1)/()\1—1)=_(n—3)((n7L1),
~ . 9t vzl o g that is, the system can converge to a fixed poiny & ((n
\j, j=1,2,..n become less than unity in modulus. —3)/(n+1),1).

For an one-dimensional discrete system and its adjusted
counterpart, at a fixed poing there exists a simple one-to-

one relationship between=f'(x) andx=T'(X): NONUNIFORMLY AAM
Corollary 2 provides us with invaluable insight about the
A=(1-\)+7. (4) effectiveness of nonuniformly AAM given by E@2).
If we assume thaf; is continuous for almost all points,
For a multidimensional systems, the one-to-one relationshifor j=1,2,..n, then it is easy to see that, if al;, j
between);, y;, andX; like identity (4) does not exists in  =1,2,...n, are sufficient close ta*, the dominant eigen-
general, which makes the analysis of the effect of egobn  value of J can still be guaranteed to be less than unity in

X; turn out to be extremely difficult. One exception lies in Modulus. Consequently, we have the following.

the case of the uniformly AAM, that is, Theorem 1For an-dimensional_dynamical systey; ¢
=F(X,), if an unstable fixed poirX is either a type-I fixed
I'=diag{vy,v,....y}=vln, point (a;<1 for all j=1,2,...n) or a type-ll fixed point(a,

>1 for all j=1,2,...n), it can always be stabilized through a
that is, all variables are adjusted with the same speed: nonuniformly AAM with suitable choice of adaptive param-

eter matrix.
Xir1=F=(1—y)F(X)=yX;. (5) Notice that type-IV fixed points are essentially related to
bifurcation phenomenon, which can be easily overcdtoe
The following corollary is shown if2]. be changed into either a type-l or a type-ll fixed ppint

Corollary 1. For each and every fixed point &fandF, through varying the original system’s parameters; we shall
there exists the following one-to-one correspondence be20t discuss this in detail. So it does not deserve special dis-

tween their eigenvalues: cussion. We shall thus concentrate on the type-Ill fixed
point, which turns out to be uncontrollable by uniformly
N : AAM.
N=(1=y)N\j+y, j=1.2,.n. (6)

By intuition, it seems to be possible to stabilize any type

Theorem 1 and the generic property together enable us t%f fixed Po_mt by a swtablg adaptive paramete_r maiitiwith
omevy;’s in the conventional range, others in the general-

adjust the eigenvalues to become less than unity in modulu

: : . : d range. Formally, it is questioned that, for a given non-
by suitable choice of a single adaptive parametenly. 1ze A .
Corollary 2. For a n-dimensional dynamical system linear system(1), if its fixed points are of type Il or type IV,

B ble fixed DOINK b bilized whether there always exists an adaptive parameter miatrix
ﬁt”_:]:(xt.)f‘ anl undsta e |xd§ poinK gaP 3 sta ”Z.]? =diag{y1,y2,....¥n}, With at least ond andj such thaty;
through uniformly adaptive adjustment defined by £).i # v, such that the adjusted syste@) is stabilized at the

and only if X is either a type-I fixed pointaj<1 for all j  same fixed point. The answer is unfortunately negative.

=1,2,..n) or a type-ll fixed point(a;>1 for all j Mathematically, however, a simple relationship between

=1,2,..n) the original eigenvalues and new eigenvalues analogous to
Example 1. Type-l fixed point stabilized by uniformlyidentity (6) can be obtained only for some special situations

AAM. such as recursive systertts be discussed in the following

Consider the followingn-dimensional discrete systems:  Now that all variables are dependent on each other, on one
hand, stability may be easily achieved by adaptively adjust-
) ing only parts of the variables. On the other hand, if each
X; :a;_lz X; for i=1.2 n . . . . . .
it+1 =42 “ e L RELLY variable is adjusted independently without necessary coordi-
nation, the overall effects become totally unpredictably er-
Due to the linearity, the Jacobian matrix is a constant@tiC. _ _ _
matrix given by . To exemphf_y the;e remgrks, we start with the examina-
tion of a two-dimensional discrete system.

0o -1 ~1 Let_.J(Y) be the Jacobian matrix associated with a fixed
point X of some two-dimensional system:

n

a b
c d/’

| -1 1., 1 —
J= 2 0 2 2

J(X)=

-3 -3 0 Denote
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Xj:(l— ’)/J))\]+’)/J y j:1,2

exists if and only if one of the following situations occufs:
v1= 72, i.e., uniformly adjustmentand (ii) bc=0, i.e., re-
cursive systems

In general, wheny;# y,, each eigenvalue is affected by
both adjustment parameters symmetrically; the interaction of
these parameters makes the sensitivity analysis of overall
effects become quite difficult.

Now that uniformly adaptive adjustment, which is a spe-
cial case of nonuniformly AAM, can stabilize both the type-|
and type-Il fixed points, by the continuity argument, we can
assure the existence of a nonuniform adjustment parameter
matrixI'=diag{y,y,...,yn} [With at least one pair df, j)
such thaty; # y;] that can stabilize type-l and type-Il fixed
points.

Then what remains unsolved are type-lll fixed points, that
is, the fixed points with part of the eigenvalues are greater
than or equal to unity but the rest are less than unity. Several
issues need to be resolved.

FIG. 1. Distribution of fixed points. At first, even though we have shown that a type-IlI fixed
point cannot be stabilized through uniformly adaptive adjust-
T=a+d=trace of 7, ment, we are still not sure whether they can be stabilized
through a combination of adaptive parameters that are not
D=ad—bc=determinant of 7, identical but all in the same randeither in conventional
range or generalized rangeAn “impossibility” is shown
H=T>—4D, for a two-dimensional system.

o Actually, for the Jacobian matricég) and(8), we have
then eigenvalues af(X) can be expressed in terms of these o
invariants, as follows: T—-D=(1—y)(1—vy,)(7—-D—1)+1,

N =1 (T \H) =1L (T \T?—4D). 7y which implies the following.
1272 ( )=2 ) @ (1) A type-IV fixed point cannot be stabilized by any

The stability regime and distribution of unstable fixed (y,,y,), owing to the fact that— D=1 if 7— D=1.
points can be depicted in(d, D) plane, which is sketched in (2) A type-lll fixed point with P<1 and7—D>1 can

Fig. 1. only be stabilized through a combination ofy(, y,) satisfy-

It is shown that a type-1V fixed point is represented by theing the inequality (+ y,)(1— vy,)<0, that is, one takes val-
divergence bifurcation boundar§—D=1, while a type-lll  yes in the conventional range, the other takes values in the
fixed point (\;>1,A,<1) occurs only under two situ- generalized range.
ations: (i) D<1 and7—D>1; and (i) D>1, 7-D<1, Second,does there exist any special form systems for
but H>0. which AAM always works—not only for type-l or type-II

With adaptive adjustment df =diag{y;,7,}, the Jacobian fixed points, but also for type-Ill fixed poifitThe answer is
matrix becomes definitely “Yes.” One such system is the recursive system

that has been widely applied in social science.
3(X) = (1-y)aty (1=yyb ®) A nonlinear system F(X)={f.(X),f2(X),...,fa(X)},

with X=(X1,X,,...,Xy), is recursiveif f; depends only on
the firsti variables, that is,

(1=y)c  (1—y)d+y,)’

which gives the eigenvaluesflyz pair as E’Z _ )
=1/2(T +\T?-4D) where X1t+1= F1(Xay),

~ X =f5(Xq1¢,X21),
T=T+71(1—a)+72(1—d), 2t+1 2( 1t 2t)

and ©
= Xit+1= F(Xqt , Xot - Xt
D=(1-7)(1- 32D+ (1-T) yay+ayz+ mid. o= Bl

We see that, even for a two-dimensional system, the relation-
ship between adjustment parameters, original eigenval-
ues\j,, and new eigenvalueilvz become very compli-
cated. Theorem 2 (recursive system&or ann-dimensional re-
It can be verified that the simple relationship cursive system defined by E¢P), if df;/dx|x-x#1, fori

Xnt+1= (X1t Xot s+ Xn) -
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=1,2,...n, then there always exists an adaptive parameter df,
matrix I' =diag{y;,s,...,yn} such that the adjusted system ax, o - 0
df, df, 0
— JX)=| dxg dx, , 11
Xir1=Fr=(=T)F(Xy)+T'X; (10 ) . : . : 1y
df, df,  df,
can be stabilized to its generic fixed poit B dxy A xx
Proof. If F is recursive, then at the fixed poid, its  with eigenvalues\;=df;/dx, i=1,2,..n. At the same
Jacobian matrix is an upper or lower triangular matrix. Fol-fixed point, the Jacobian matrix for the adjusted syst&@)
lowing the definition of Eq(10), becomes
1 afy | 0 0
( —Yl)d—xl Y1
df, df,
- 1—y,) — 1—y)——+7y, 0
TX) = ( Y2) dx, ( ¥2) dx, Y2 ’ (12)
1 df, 1 df, o df”+
( ?’)dxl ( vn)dxz ( 7n)dxn n o
|
which gives rise to the eigenvalues _ A+Ny =N,
- df; .
ki:(l_w& v, =120 then its counterpart from adaptive adjustment will produce
X=X N 17 2 T
N1o=3 (7=NT“—4D), where
It follows from the discussion in previous sections, if =
L — + _ +
df;/dx|y_x#1, that is, the fixed point is not of type IV, =yt (1= y)(atho),
there always exists a;>0 such that|7\i|<1, for all i P=(1— 1-
=12,.n. Q.E.D. (1= 7)1~ 72)h ik

Theorem 2 serves both as an example that a type-lll fixed |, this case, the adjustment parametgmas no effect on

point can be stabilized through nonuniformly adaptive ad+ne real part, so there exist some cases in which the dynamics
justment and as an example that a type-IV fixed point that;nnot be controlled by, alone.

cannot be stabilized through AAM. In fact, if y,=0, we have 7\1,2: V2N, 4N,
V(N1 +N2) %+ 4NN ,y,]. Either [N1+X5[>2, or M\,
CONTROLLABILITY OF AAM >0, v, will become ineffective. Thereforey, is indispens-

able.
For example, the Henon process, ;= 6(X;), defined by

The last issue deserving special attentiorasitrollabil-
ity. As we have commented before, if a multidimensional
system is not symmetrical, the effect of each adaptive param- 7 3
etery;, i=1,2,...n on the stability will be different. There X1t+1:§+ 1—Ox2t—x§t,
exist situations in which some of adaptive parameters are
dispensablgthat is, the system can still be stabilized if these B
variables are not adjusted;(=0). On the other hand, there Xal+17 Xat
are some critical adjustment parameters thatiadéspens- i L= L
able, that is, the stability cannot be achieved if any one off1@S Wo fixed pointsX,~(0.8839,0.8839) with eigenvalues

them equals to zero. This point can be clearly illustrated\{" A5"}={0.156-1.924, and  Xp~(—1.5839,

(13

through the following three examples. —1.5839) with eigenvalues\ {2 \{}={3.26-0.92, re-
Example 2. Part of adjustment parameters are indispensspectively. B
able. The fixed pointX; is of type I, so it can be stabilized

For a two-dimensional system, if its Jacobian at a fixedthrough uniformly AAM (referring to[2] for computer simu-
point X is given by lations.
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FIG. 2. Asymmetric stabilization.

o FIG. 3. Symmetrical stabilization.
But X, is a type-lll fixed point, so it can only be stabi-

lized through nonuniformly AAM, Example 4. None of the adjustment parameters are indis-

7 3 pensable
Xpt41=(1— 1) 5+ F)x2t—x§t + Y1 X1t Consider the case that
Xat+1= (1= y2)Xq + ¥Xat - (14) j(f)—(o )\)
The fact tha{r {2+ 12| >2 implies thaty, is indispens- A
able.
Example 3. Both adjustment parameters are indispenswith A>1, then the eigenvalues, ,= £\, that is, the fixed
able o point X is of type Ill. By nonuniformly AAM, the eigenvalue
If the Jacobian at the fixed poitt is given by pair changes to
I
JX)= , ~ Y1t Y2
B ltap M= £ 3V(y1— ¥2) 2+ 41— y) (1— y)N\2
the eigenvalues will be a positive reciprocal pair due to the
facts that Therefore, both adjustment parameters have equal power
AA,=D=1 in stabilizing the dynamics, which suggests that the stabili-
’ zation regime in {4,y,) plane is symmetrical. A typical
and stabilization regime is illustrated in Fig. 3. Notice that either
parameter alone can stabilize the system by taking an adap-
N+ N=T=2+ap, tive speed in the generalized range.

which suggests that the fixed poitt, 0) is a type-Ill fixed

point. FUTURE STUDY

The Jacobian matrix from adaptive adjustment is ) ) )
Compared to other algorithms so far proposed in the lit-

~ 1 (1-7)a erature, the adaptive adjustment mechanism possesses some
J= . B . unigue advantages. First, it requires neithgriori informa-
(1=72)8 1+(1=vz)ap tion about the system nor any external generated control sig-
If we let 6=aB, we have D=|71=1+5y,(1—v,).

nal. Second, it is easy to implement in practice. Last but not
~ | e least, it forces the system to converge to its generic fixed
Therefore,D>1 holds in the case of;y,=0, which implies points.
that neithery, nor y, alone has enough power to force the  Agwe can see from the examples of the last section, when
system to converge to the fixed point. The stability can onlynonyniformly adjustment is required for stabilizing a type-Iil
be achieved only whe, is in the conventional range, while fixed point, the adjustment parameters should distribute in
72 Stays in the generalized range. o _ conventional range and generalized range with certain ratio.
Stabilization regime is jointly given bylip bifurcation |t the original system is dynamically bounded in the sense
boundary {,=-1): 7+ D=-1, andy,>1, where7=2 that its trajectory is constrained to a certain subspace, which
+(1-1vy,) 8. A typical example is illustrated in Fig. 2 for occurs with chaotic systems, gradually increasing an adap-
6=2. tive parameter from zero onwards will not destroy such
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“boundedness.” But if some of adjustment parameters inapthat stabilization can be accomplished without risk of de-
propriately exceed unity, bounded dynamics may not bestroying the original system. The necessary and/or sufficient
guaranteed. It would be the future research to design an agonditions for a type-lll fixed point to be stabilized also de-

propriate learning mechanism or coordination mechanism seerve further study.
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