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Stabilizing unstable discrete systems by a nonuniformly adaptive adjustment mechanism
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~Received 13 December 1999; revised manuscript received 31 March 2000!

An adaptive adjustment mechanism with uniform adjustment speeds has been generalized to nonuniform
speeds so that a broader class of discrete systems can be stabilized. The controllability issue in terms of partial
adjustment is also explored.

PACS number~s!: 05.45.Gg
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MOTIVATIONS

Controlling chaos, or more generally, stabilizing unsta
dynamical systems, has always been an important topi
physics. Recent advances and developments can be
from @1,2,3# and references therein. In@2#, an adaptive ad-
justment mechanism~AAM ! with uniform adjustment spee
is proposed to stabilize an unstable multidimensional disc
system. This mechanism, while inherited from the adap
expectation scheme widely applied in economics, posse
some unique advantages over the others in demanding
ther a priori information about the system nor any extern
generated control signal and always forcing the system
converge to its generic periodic points. In this article,
AAM has been generalized with nonuniformly adjustme
speeds. Such generalization ensures the stabilization
more broader class of discrete systems. More importan
the controllability issue in terms of partial adjustment is a
explored.

Instead of focusing on the parameter ranges of some
cific systems and discussing their controllability as most
erature does, this paper will follow the spirit of@2# and con-
tinue our exploration directly to the nature of unstab
periodic ~fixed! points so as to address the controllabil
with respect to most fundamental internal structures. For
convenience of discussion, we start with some basic de
tions and brief review of@2#.

UNIFORMLY AAM

Consider ann-dimensional dynamical system defined b

Xt115F~Xt!, ~1!

whereXt5(x1t ,x2t ,...,xnt), andF5( f 1 , f 2 ,...,f n), with f i
being well-defined functions on a domainI n.

Definition 1: By AAM we mean the following adjusted
system:

Xt115F̃G5~ I2G!F~Xt!1GXt, ~2!

whereG5diag$g1,g2,...,gn% is a diagonal matrix and is re
ferred to as anadaptive parameter matrixhereafter. The
value ofg i represents the adjustment speed for thei th vari-
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able (i 51,2,...,n) and is assumed to vary in theconventional
range @0, 1# and in thegeneralized range@1, 1`!.

Re-expressing Eq.~2! as Xt115F(Xt)1G@Xt2F(Xt)#,
we see that AAM is a type of linear feedback control so th
adjustments are implemented whenever the relevant sys
variables wander away from their previous states.

Let X̄ be the fixed point of Eq.~1!, that is,X̄5F(X̄). It is
easy to see that the systemF̃G(Xt) shares exactly the sam
set of fixed points ofF, that is, X̄5F̃G(X̄), which will be
referred to asthe generic propertyfor later reference.

DenoteJ(X̄) as the Jacobian matrix of the original sy
tem F evaluated atX̄ with $l1 ,l2 ,...,ln% as then roots of
the characteristic equation, i.e.,

ulI2J~X̃!u5)
j 51

n

~l2l j !50,

whereI is a unit matrix.
The stability of a fixed pointX̄ is jointly determined by all

the eigenvalues$l j%. Let ulmaxu5maxj ulju. Mathematically,
the fixed pointX̄ is stable ifulmaxu,1.

We are only concerned with the unstable fixed points, t
is, the fixed points withulmaxu>1. Denote a pair of complex
conjugatesl j and l̄ j by

l j5aj1bj i, l̄ j5aj2bj i,

with the modulesul j u5ul̄ j u5Aaj
21bj

2.
An unstable fixed point can be classified according to

modulus of related eigenvalues:
Definition 2 ~classification of unstable fixed

points!: type-I unstable fixed points, aj,1, for all j, i.e., the
fixed points with all eigenvalues less than unity in real pa
type-II unstable fixed points, aj.1, for all j, i.e., the fixed
points with all eigenvalues greater than unity in real pa
type-III unstable fixed points, ai.1, aj,1 for somei, j , i.e.,
the fixed points with some real parts greater than unity, o
ers less than unity in real parts;type-IV unstable fixed points,
there exists at least onej such that eitheraj51 or l j51, i.e.,
the fixed points with unity eigenvalues.

Let J̃(X̄) be the Jacobian matrix of the processF̃ evalu-
ated atX̄ and $l̃1 ,l̃2 ,...,l̃n% be the related eigenvalues, s
that
3455 ©2000 The American Physical Society
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ulI2J̃~X̄!u5)
j 51

n

~l2l̃ j !50. ~3!

The objective of AAM is to stabilize an unstable fixe
point such that, after introducing an appropriate adaptive
rameter matrixG5diag$g1,g2,...,gn%, the new eigenvalues
l̃ j , j 51,2,...,n become less than unity in modulus.

For an one-dimensional discrete system and its adju
counterpart, at a fixed pointx̄, there exists a simple one-to
one relationship betweenl5 f 8( x̄) and l̃5 f̃ 8( x̄):

l̃5~12l!1g. ~4!

For a multidimensional systems, the one-to-one relations
betweenl j , g j , and l̃ j like identity ~4! does not exists in
general, which makes the analysis of the effect of eachg j on
l̃ j turn out to be extremely difficult. One exception lies
the case of the uniformly AAM, that is,

G5diag $g,g,...,g%5gIn ,

that is, all variables are adjusted with the same speed:

Xt115F̃5~12g!F~Xt!5gXt . ~5!

The following corollary is shown in@2#.
Corollary 1. For each and every fixed point ofF and F̃,

there exists the following one-to-one correspondence
tween their eigenvalues:

l̃ j5~12g!l j1g, j 51,2,...,n. ~6!

Theorem 1 and the generic property together enable u
adjust the eigenvalues to become less than unity in mod
by suitable choice of a single adaptive parameterg only.

Corollary 2. For a n-dimensional dynamical system
Xt115F(Xt), an unstable fixed pointX̄ can be stabilized
through uniformly adaptive adjustment defined by Eq.~5! if
and only if X̄ is either a type-I fixed point~aj,1 for all j
51,2,...,n! or a type-II fixed point ~aj.1 for all j
51,2,...,n!

Example 1. Type-I fixed point stabilized by uniform
AAM.

Consider the followingn-dimensional discrete systems:

xit 115ai2
1
2 (

j Þ i

n

xjt , for i 51,2,...,n.

Due to the linearity, the Jacobian matrix is a const
matrix given by

J5S 0 2 1
2 ¯ 2 1

2

] ] ¯ ]

2 1
2 0 2 1

2 ¯ 2 1
2

] ] ¯ ]

2 1
2 2 1

2 ¯ 0

D

a-
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It can be verified that the eigenvalue ofJ is l152(n
21)/2 andl i5

1
2 , for i 52,3,...,n. Therefore, the system i

unstable whenn>3. Since all eigenvalues are less than un
~type-I fixed point!, the system can be stabilized throug
uniformly adaptive adjustment. Actually, the critical param
eter ḡ is equal to ḡ5(l111)/(l121)5(n23)/(n11),
that is, the system can converge to a fixed point ifgP„(n
23)/(n11),1….

NONUNIFORMLY AAM

Corollary 2 provides us with invaluable insight about t
effectiveness of nonuniformly AAM given by Eq.~2!.

If we assume thatf j is continuous for almost all points
for j 51,2,...,n, then it is easy to see that, if allg j , j
51,2,...,n, are sufficient close tog* , the dominant eigen-
value of J̃ can still be guaranteed to be less than unity
modulus. Consequently, we have the following.

Theorem 1. For an-dimensional dynamical systemXt11

5F(Xt), if an unstable fixed pointX̄ is either a type-I fixed
point ~aj,1 for all j 51,2,...,n! or a type-II fixed point~aj
.1 for all j 51,2,...,n!, it can always be stabilized through
nonuniformly AAM with suitable choice of adaptive param
eter matrix.

Notice that type-IV fixed points are essentially related
bifurcation phenomenon, which can be easily overcome~to
be changed into either a type-I or a type-II fixed poin!
through varying the original system’s parameters; we sh
not discuss this in detail. So it does not deserve special
cussion. We shall thus concentrate on the type-III fix
point, which turns out to be uncontrollable by uniform
AAM.

By intuition, it seems to be possible to stabilize any ty
of fixed point by a suitable adaptive parameter matrixG, with
someg j ’s in the conventional range, others in the gener
ized range. Formally, it is questioned that, for a given no
linear system~1!, if its fixed points are of type III or type IV,
whether there always exists an adaptive parameter matrG
5diag$g1,g2,...,gn%, with at least onei and j such thatg i
Þg j , such that the adjusted system~2! is stabilized at the
same fixed point. The answer is unfortunately negative.

Mathematically, however, a simple relationship betwe
the original eigenvalues and new eigenvalues analogou
identity ~6! can be obtained only for some special situatio
such as recursive systems~to be discussed in the following!.
Now that all variables are dependent on each other, on
hand, stability may be easily achieved by adaptively adju
ing only parts of the variables. On the other hand, if ea
variable is adjusted independently without necessary coo
nation, the overall effects become totally unpredictably
ratic.

To exemplify these remarks, we start with the examin
tion of a two-dimensional discrete system.

Let J(X̄) be the Jacobian matrix associated with a fix
point X̄ of some two-dimensional system:

J~X̄!5S a b

c dD .

Denote
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T5a1d5trace of J,

D5ad2bc5determinant ofJ,

H5T224D,

then eigenvalues ofJ(X̄) can be expressed in terms of the
invariants, as follows:

l1,25
1
2 ~T6AH!5 1

2 ~T6AT 224D!. ~7!

The stability regime and distribution of unstable fixe
points can be depicted in a~T, D! plane, which is sketched in
Fig. 1.

It is shown that a type-IV fixed point is represented by t
divergence bifurcation boundaryT2D51, while a type-III
fixed point (l1.1, l2,1) occurs only under two situ
ations: ~i! D,1 and T2D.1; and ~ii ! D.1, T2D,1,
but H.0.

With adaptive adjustment ofG5diag$g1,g2%, the Jacobian
matrix becomes

J̃~X̄!5S ~12g1!a1g1 ~12g1!b

~12g2!c ~12g2!d1g2
D , ~8!

which gives the eigenvalues l̄1,2 pair as l̄1,2

51/2(T̃ 6AT̃ 224D̃) where

T̃5T1g1~12a!1g2~12d!,

and

D̃5~12g1!~12g2!D1~12T !g1g21ag21g1d.

We see that, even for a two-dimensional system, the relat
ship between adjustment parametersg1,2, original eigenval-
ues l1,2, and new eigenvaluesl̃1,2 become very compli-
cated.

It can be verified that the simple relationship

FIG. 1. Distribution of fixed points.
n-

l̃ j5~12g j !l j1g j , j 51,2

exists if and only if one of the following situations occurs:~i!
g15g2 , i.e., uniformly adjustment; and ~ii ! bc50, i.e., re-
cursive systems.

In general, wheng1Þg2 , each eigenvalue is affected b
both adjustment parameters symmetrically; the interaction
these parameters makes the sensitivity analysis of ove
effects become quite difficult.

Now that uniformly adaptive adjustment, which is a sp
cial case of nonuniformly AAM, can stabilize both the type
and type-II fixed points, by the continuity argument, we c
assure the existence of a nonuniform adjustment param
matrixG5diag$g1,g2,...,gn% @with at least one pair of~i, j!
such thatg iÞg j # that can stabilize type-I and type-II fixe
points.

Then what remains unsolved are type-III fixed points, th
is, the fixed points with part of the eigenvalues are grea
than or equal to unity but the rest are less than unity. Sev
issues need to be resolved.

At first, even though we have shown that a type-III fixe
point cannot be stabilized through uniformly adaptive adju
ment, we are still not sure whether they can be stabiliz
through a combination of adaptive parameters that are
identical but all in the same range~either in conventional
range or generalized range!. An ‘‘impossibility’’ is shown
for a two-dimensional system.

Actually, for the Jacobian matrices~7! and ~8!, we have

T̃2D̃5~12g1!~12g2!~T2D21!11,

which implies the following.
~1! A type-IV fixed point cannot be stabilized by an

(g1 ,g2), owing to the fact thatT̃2D̃51 if T2D51.
~2! A type-III fixed point with D,1 andT2D.1 can

only be stabilized through a combination of (g1 ,g2) satisfy-
ing the inequality (12g1)(12g2),0, that is, one takes val
ues in the conventional range, the other takes values in
generalized range.

Second,does there exist any special form systems
which AAM always works—not only for type-I or type-
fixed points, but also for type-III fixed points? The answer is
definitely ‘‘Yes.’’ One such system is the recursive syste
that has been widely applied in social science.

A nonlinear system F(X)5$ f 1(X), f 2(X),...,f n(X)%,
with X5(x1 ,x2 ,...,xn), is recursive if f i depends only on
the first i variables, that is,

x1t115 f 1~x1t!,

x2t115 f 2~x1t ,x2t!,

]

~9!
xkt115 f k~x1t ,x2t ,...,xkt!,

]

xnt115 f n~x1t ,x2t ,...,xnt!.

Theorem 2 (recursive systems!. For ann-dimensional re-
cursive system defined by Eq.~9!, if d fi /dxi uX5X̄Þ1, for i
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51,2,...,n, then there always exists an adaptive parame
matrix G5diag$g1,g2,...,gn% such that the adjusted system

Xt115F̄G5~ I2G!F~Xt!1GXt ~10!

can be stabilized to its generic fixed pointX̄.
Proof. If F is recursive, then at the fixed pointX̄, its

Jacobian matrix is an upper or lower triangular matrix. F
lowing the definition of Eq.~10!,
if
,
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J~X̄!5S d f1

dx1
0 ¯ 0

d f2

dx1

d f2

dx2
¯ 0

] ] � ]

d fn

dx1

d fn

dx2
¯

d fn

dxn

D
X5X̄

, ~11!

with eigenvaluesl i5d fi /dxi , i 51,2,...,n. At the same
fixed point, the Jacobian matrix for the adjusted system~10!
becomes
J̃~X̄!5S ~12g1!
d f1

dx1
1g1 0 ¯ 0

~12g2!
d f2

dx1
~12g2!

d f2

dx2
1g2 ¯ 0

] ] � ]

~12g!
d fn

dx1
~12gn!

d fn

dx2
¯ ~12gn!

d fn

dxn
1gn

D
X5X̄

, ~12!
ce

mics

s

which gives rise to the eigenvalues

l̃ i5~12g!
d fi

dxi
U

X5X̄

1g i , i 51,2,...,n.

It follows from the discussion in previous sections,
d fi /dxi uX5X̄Þ1, that is, the fixed point is not of type IV
there always exists ag i.0 such thatul̃ i u,1, for all i
51,2,...,n. Q.E.D.

Theorem 2 serves both as an example that a type-III fi
point can be stabilized through nonuniformly adaptive a
justment and as an example that a type-IV fixed point t
cannot be stabilized through AAM.

CONTROLLABILITY OF AAM

The last issue deserving special attention iscontrollabil-
ity. As we have commented before, if a multidimension
system is not symmetrical, the effect of each adaptive par
eter g i , i 51,2,...,n on the stability will be different. There
exist situations in which some of adaptive parameters
dispensable, that is, the system can still be stabilized if the
variables are not adjusted (g i50). On the other hand, ther
are some critical adjustment parameters that areindispens-
able, that is, the stability cannot be achieved if any one
them equals to zero. This point can be clearly illustra
through the following three examples.

Example 2. Part of adjustment parameters are indispe
able.

For a two-dimensional system, if its Jacobian at a fix
point X̄ is given by
d
-
t

l
-

re

f
d

s-

d

J~X̄!5S l11l2 2l1l2

1 0 D ,

then its counterpart from adaptive adjustment will produ

l̃1,25
1
2 (T̃6AT̃ 224D̃), where

T̃5g11~12g1!~l11l2!,

D̃5~12g1!~12g2!l1l2 .

In this case, the adjustment parameterg2 has no effect on
the real part, so there exist some cases in which the dyna
cannot be controlled byg2 alone.

In fact, if g150, we have l̃1,251/2@l11l2

6A(l11l2)214l1l2g2#. Either ul11l2u.2, or l1l2
.0, g2 will become ineffective. Therefore,g1 is indispens-
able.

For example, the Henon processXt115u(Xt), defined by

x1t115
7

5
1

3

10
x2t2x1t

2 ,

x2l 115x1t , ~13!

has two fixed points:X̄1'(0.8839,0.8839) with eigenvalue

$l1
(1) ,l2

(1)%5$0.156,21.924%, and X̄2'(21.5839,
21.5839) with eigenvalues$l1

(2) ,l2
(2)%5$3.26,20.92%, re-

spectively.
The fixed pointX̄1 is of type I, so it can be stabilized

through uniformly AAM~referring to@2# for computer simu-
lations!.
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But X̄2 is a type-III fixed point, so it can only be stab
lized through nonuniformly AAM,

x1t115~12g1!F7

5
1

3

10
x2t2x1t

2 G1g1x1t ,

x2t115~12g2!x1l1gx2t . ~14!

The fact thatul1
(2)1l2

(2)u.2 implies thatg1 is indispens-
able.

Example 3. Both adjustment parameters are indispe
able.

If the Jacobian at the fixed pointX̄ is given by

J~X̄!5S 1 a

b 11ab D ,

the eigenvalues will be a positive reciprocal pair due to
facts that

l1l25D51,

and

l11l25T521ab,

which suggests that the fixed point~0, 0! is a type-III fixed
point.

The Jacobian matrix from adaptive adjustment is

J̃5S 1 ~12g1!a

~12g2!b 11~12g2!ab D .

If we let d5ab, we have D̃5uJ̃u511dg1(12g2).
Therefore,D̃.1 holds in the case ofg1g250, which implies
that neitherg1 nor g2 alone has enough power to force th
system to converge to the fixed point. The stability can o
be achieved only wheng1 is in the conventional range, whil
g2 stays in the generalized range.

Stabilization regime is jointly given byflip bifurcation

boundary (l̃2521): T̃1D̃521, and g2.1, where T̃52
1(12g2)d. A typical example is illustrated in Fig. 2 fo
d52.

FIG. 2. Asymmetric stabilization.
s-

e

y

Example 4. None of the adjustment parameters are in
pensable.

Consider the case that

J~X̄!5S 0 l

l 0D ,

with l.1, then the eigenvaluesl1,256l, that is, the fixed
point X̄ is of type III. By nonuniformly AAM, the eigenvalue
pair changes to

l̃1,25
g11g2

2
6 1

2 A~g12g2!214~12g1!~12g2!l2.

Therefore, both adjustment parameters have equal po
in stabilizing the dynamics, which suggests that the stab
zation regime in (g1 ,g2) plane is symmetrical. A typica
stabilization regime is illustrated in Fig. 3. Notice that eith
parameter alone can stabilize the system by taking an a
tive speed in the generalized range.

FUTURE STUDY

Compared to other algorithms so far proposed in the
erature, the adaptive adjustment mechanism possesses
unique advantages. First, it requires neithera priori informa-
tion about the system nor any external generated control
nal. Second, it is easy to implement in practice. Last but
least, it forces the system to converge to its generic fix
points.

As we can see from the examples of the last section, w
nonuniformly adjustment is required for stabilizing a type-
fixed point, the adjustment parameters should distribute
conventional range and generalized range with certain ra
If the original system is dynamically bounded in the sen
that its trajectory is constrained to a certain subspace, wh
occurs with chaotic systems, gradually increasing an ad
tive parameter from zero onwards will not destroy su

FIG. 3. Symmetrical stabilization.
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‘‘boundedness.’’ But if some of adjustment parameters in
propriately exceed unity, bounded dynamics may not
guaranteed. It would be the future research to design an
propriate learning mechanism or coordination mechanism
-
e
p-
o

that stabilization can be accomplished without risk of d
stroying the original system. The necessary and/or suffic
conditions for a type-III fixed point to be stabilized also d
serve further study.
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